تحليل تجربى و عددى تاثير عمق غوطهورى بر فر كانسهاى طبيعى صفحه دايروى مقيد محيطى مغروق در مجاورت سطح آزاد آب

امير ناصر الاســلامى 1 محمود سـالارىی2
1 - كارشناسى ارشد، مهندسى مكانيك، دانشگاه جامع امام حسين (ع)، تهر ان
2- دانشيار، مهندسى مكانيك، دانشگاه جامع امام حسين (ع)، تهران

Experimental and numerical analysis of the effect of immersion depth on the natural frequencies of a bounded circular plate submerged in vicinity of the water free surface

Amir Nasseroleslami, Mahmoud Salari*
Department of Mechanical Engineering, Imam Hussein University, Tehran, Iran
* P.O.B. 1655853548, Tehran, Iran, msalari@ihu.ac.ir

ARTICLE INFORMATION

Original Research Paper

Received 04 April 2016
Accepted 13 June 2016
Available Online 13 July 2016

Keywords:

Natural frequency
Experimental analysis
Circular plate
Immersion depth
Water free surface

Abstract

Recognition of the dynamical behavior and vibrations of marine structures, submerged in vicinity of the water free surface, is one of the most important issues in the design of marine structures. It is obvious that physical properties of the ambient fluid have some influence on vibrational frequencies of the structures. For the structures that have been exposed under the influences of asymmetric environmental conditions, prediction of their dynamic behaviors is more complicated. In this paper the effects of immersion depth on first natural frequency of a bounded circular plate that was placed parallel in the vicinity of the water surface, are studied numerically and experimentally. The techniques used for exciting the plate and measurements of natural frequencies are innovations of this research. Numerical solutions are done using ABAQUS software. Comparison of the numerical and experimental results shows a good consistency. The investigations showed that increasing the immersion depth, the ratio of the depth to plate diameter reached to a certain value and the natural frequencies were also decreased. After that it remained constant while the immersion depths of plate were increased.

است كه در آن مشخصات ديناميكى سيستم يعنى فركانسهاى طبيعى، ضريب ميرائى و شكل مودها بهدست مىآيند و براساس آن مدل رياضى رفتار ديناميكى سيستم نيز استخراج خواهي
 نام داده هاى مودال در خود جاى داده است. تلاش هاي بتوانند روش حل براى پيشبينى فر كانسهاى طبيعى يك سازه
 تحليلى و عددى ارتعاشات ورق در تماس با آب را مورد بررسى قرار دادند.

1 - مقدمه

 آناليز مودال پوستهها مىشود تماس آنها با سيال است. آناليز مودال فرايندى
 قرار دادند. تارى ورديلو و همكاران [22] مطالعاتى را دا در مورد ار تعاشات آزاد

 هيدروفون استفاده شده است. براى تحليلهاى عددى نيز از نرمافزار آباكوس استفاده شده است.

2 - تعريف مساله، تجهيزات آزمايش و شرايط حل عددى

 "شكل 1" نحوه قرار كرفتن ورق دايروى مقيد محيطى در مخزي كه فرض پوستهاى بودن برقرار كردد. آناليز غشاى دايروى مقيد محيطى در سيال تراكمْناپیذير در دو در مرحله تحليل عددى و آزمايشگاهى انجام مىشود. در آناليز تجربى از آن آنجايى كه

 عايق كارى شده است و طى عملياتى روى آن تبديل به مكَنت شده است.
 الكترومغناطيس، ورق كه در فاصله مناسبى از آن قرار گرفتنه است مرتع مىشود. ورق گالوانيزه صنعتى باعنوان ورق مطلوب آزمايش انـيا انتخاب شده است چرا كه سختى، قطر و ضخامت ورق انتخاب شده بهكَونهای است كه به

Fig. 1 A bounded circular plate Along with electromagnetic vibrator and hydrophone submerged in the rigid tank
شكل 1 ورق دايروى مقيد محيطى به همراه دستگاه لرزاننده الكترمغناطيس و
هيدروفون مغروق در مخزن صلب

وسيله ترانس 8 آمیر مى توان فركانس طبيعى اوليه را در ورق ايجاد كرد.

[^0]اسجيينوسا و كاللًو [1] مطالعاتى را روى ارتعاشات صفحات مغروق در آب با

 صفحه مستطيل شكل در شرايطى كه روى سيال غيرقابل تراكم در فر فركانس
 توانستند معادلات ارتعاشى حاكم بر سيستم ورق - سيار ميال را با بهدست آورند.
 استخراج كردند. آمابيلى و همكاران [4] به مطالعه ارتعاشا

 آزمايشگاهى خود را روى فر كانسهاى طبا

 فر كانسهاى بالا بدون در نظر كرفتن امواج سطحى مورد اريّي آيابى قرار دادند

 كارگيرى روش المان مرزى به مطالعه ارتعاشات آزاد صفحاتى كه بها بهصورت

 [14] تاثير نسبت طول به عرض در ورقهاى مستطيلى غيلى غوطهور در سيال را را

 شامل سيال و يا غوطهور در آن هستند را بهدست آوردند آند. آنها از از تابع پتانسيل براى محاسبه فشار هيدروديناميكى روى سازهها استفاده كردند. آن آن آن ها همحچنين به اين نتيجه رسيدند كه عمق سيال تاثير مـهمى روى روى برهم

 ديناميكى را بهدست آوردند. عسكرى و جيانگَ [18] روش تحليلى ارينى ارائه شده

 فونداسيون الاستيك سوار شده است و تنها از يك طرف با با سيال در تما تماس است پرداختند. آناليز ارتعاشات آزاد صفحه مستطيلى مغروق در سيال يا شناور روى سطح آزاد مايع توسط حسينى هاشمى و همكار آناران [20] انجام شد. گودرزى و صباغ يزدى [21] ميرايى هيدروديناميكى صفحات افقى و عمودى

Fig. 3 Equipment used in the experimental analysis شكل 3 تجهيزات استفاده شده در آناليز تجربى

عمليات فيلترينگً صورت نگیيرد با دامنههاى نوسان آشفته و پراكنده در آمر آما

 اين مرحله سيگَنالها وارد دستگاه اسيلوسكوپ مى شُود تا با با توجه بها با دامنه
نوسانات فركانسهاى طبيعى مشخص شود.

بهمنظور تحليل عددى مساله، آناليز مودال توسط نرمافيز موار آباكوس عمقهاى مختلف روى ورق كالوانيزه با همان مشخصاتى كه دا در آزمايش مورد استفاده قرار گرفته است انجام مى شود و نتايج حاصل از آن با با دادهمانى نتيجه كيرى شده از آناليز تجربى مقايسه خواهد شد. به منظور آناليز عددى آب با با دانسيته 1000 كيلوگرم بر متر مكعب و سرعـري ثانيه و همحْنين ورق دايروى با مشخصات موجود در جدول 1 تنظيم شده
 متر در سطح زيرين و با عمقهاى متفاوت در سطح رويين ورق در نر نرمافزار
 عمق 3 سانتىمتر ارائه شده است. بخشهان شبيهسازی شاز شده در "شكل 4" عبارتند از: 1) سطح زيرين ورق شامل آب به طول 18 سانتىمتر. 2) ورق كالوانيزه مقيد محيطى. 3) سطح رويين انين ورق، شامل آب آب به طول 3 سانـي سانتىمتر. 4) هوا با قيد بینهايت. براى المانبندى ورق دايروى از المانهاى S4R كه الما
 سازى سيال استفاده شده است. به منظور حل FSI يك طرفه و ايجاد شرايط كويلينگ در سطح مشترك سيال و سازه مىبايست از قيد مناسب در فـر الصل مشترك سطوح استفاده شود. همحچنين از سطوح امپیانس برانی مرای مدلسازیى
 كرد چرا كه قرار كرفتن هيدروفون در دا فاصله نسبتا كم از ورق ايجاد فركانس تحريك با دامنه مناسب توسط ترانس با ولتاز 440 ولت تاثير عوامل محيطى
را ناحیز مى كند.

همحنين ورق مذكور خاصيت جذب توسط آهنربا را دارا مىباشد كه در اين
 جدول 1 عرضه شده است.

 "شكل 2" نشان داده شده است. تجهيزات بهكار رفته در "شكل 2" عبارتند
 كالوانيزه دايروى مقيد محيطى. 4- هيدروفون. 5- تقويت كننده. 6- فيلتر. 7-
 هاى آن براساس شمارهماى بلوك دياكرام "شكل 2" تنظيم شده است.
 شده است. ترانس، متناسب با فر كانس ايجاد شده در فانكشن رين رينراتور اتور، فركانس

 فر كانسهاى بالاى 50 هرتز توسط فيلتر تضعيف مىشوند زيرا در صورتى كه

جدول 1 مشخصات ورق و مخزن انتخاب شده جهت آناليز عددى و تحليل تجربى
Table 1 Plate Specification and selected tank for numerical and experimental analysis

فولاد گالوانيزه	جنس ورق
0.00055	ضخامت (متر)
0.1	شعاع (متر)
0.3	ضريب پوآسون
200	
7850	چگًالى (كيلوگَرم بر متر مكعب)
0.45	شعاع مخزن صلب (متر)

Fig. 2 Block diagram of the experimental analysis
شكل 2 بلوك دياگرام آناليز تجربى

[^1]است چرا كه نسبت فركانس تحريك به فر كانس مود دوم بسيار كم است و بر

 پايه مىباشد در حالت مغروق در آب فر كانس طبيعى بالاى 100 هرتز را را به
 دارد. البته اثر وزن لرزاننده الكترومغناطيس نيز با انجام محاسبات بار به صورا صور افزايش چگالى در سازه در نظر گرفته شد.

$$
\text { جدول } 2 \text { نتايج آناليز تجربى در عمق } 3 \text { سانتىمتر }
$$

Table 2 The results of empirical analysis in depth of 3 cm

ولتاز خروجى (mV)	فر كانس (Hz)	عمق (cm)
392	18	
416	19	
410	20	
392	21	
440	22	3
496	23	
512	24	
520	25	
376	26	

Fig. 4 Modeling at the depth of 3 cm شكل 4 مدل سازى انجام شده در عمق 3 سانتىمتر

3 - ارائه و تحليل نتايج تجربى

 عمق صفر تا 20 سانتىمتر، 2.0 = 20 انجام شده است است كهي
 نزديك به فركانس مود اول در جدول 2 و و "شكل 5" عرضي
 است كه در زير صفحه با فاصله معينى نصب شدي شد است است تستهاى تجربى فوق براى عمقهای ماى مختلفى از غوطهورى تكرار شار شده است كه با استفاده از دادههاى بهدست آمده از آناليز تجربى، "شكل 6" براساس برازش منحنى ${ }^{1}$ ترسيم شده است. در "شا "شكل 6" ديده مى شـى شود كه با با

 طبيعى ايفاى نقش كند و پس از آن، افزايش عمق تاثيرى در كاهش
 حد عمقى شناخته شده است كه پس از آ آن افزايش عمق تاثيرى در در كاهش

 D=2a خلاء و يا هوا، fin Hz است.
روش استخراج فركانس رزونانس به اين صورت است كه در شرايط

 افزايشى پييدا نمى كند. در اين آزمايش مود اول (0,1) بر مود دوم (1,1) غالب

[^2]عمقهاى غوطهورى با ضخامت و قطرهاى مختلف مشاهده مى شود. با تغيير

 افزايش عمق غوطهورى رفتارى شبيه به "شكل 12" را از خود نشان مىدهنده

Fig. 8 The fluid pressure in the top of the circular plate شكل 8 ميدان فشار سيال در سطح رويين ورق دايروى

جدول 3 فر كانس طبيعى اول (0,1) ، نتايج حاصل از آناليزهاى تجربى و عددى
Table 3 The first natural frequency $(0,1)$, resulting from the experimental and numerical analysis

فر كانس منتج از آناليز تجربى (Hz)	فركانس منتج از آناليز عددى (Hz)	عمق (cm)
32	31.2	$0 \text { (فقط يك طرف ورق در }$ تماس با آب است)
28.1	295	1
25	273	3
23.6	259	5
22.9	25	7
22.4	24.3	9
22.2	23.8	11
22.1	235	13
22	23.2	15
22	23.1	17
22	23	19

Fig. 9 The first natural frequency (0,1) resulting from the experimental and numerical analysis at various depths

شكل 9 فركانسهاى طبيعى اول $(1,0)$ نتيجهگيرى شده از آناليز تجربى و آناليز
عددى در عمقهاى مختلف

Fig. 7 The first natural frequency $(0,1)$ normalized resulting from experimental analysis non-dimensional circular plate at a depth of immersion
شكل 7 فركانس هاى طبيعى اول $(0,1)$ نرمالايز شده منتج از آناليز تجربى ورق دايروى در عمقهاى غوطه ورى بیبعد شده

4 - تحليل نتايج عددى

بهمنظور مقايسه نتايج تحليل تجربى و عددى، آناليز مودال در عمق هاى مختلف در بازه صفر تا 20 سانتىمتر، $H_{1} / a=2.0$ انجام شد. دادههاى نتيجهگيرى شده از آناليز تجربى و نتايج مستخرج از آناليز عددى در عمقانیا يكسان نسبت به يكديگر در جدول 3 و "شكل 9" نشان داده شده است است در در د "شكل 9" مشاهده مىشود كه پس از عمق 15 سانتىمتر، دو روش آناليز تجربى و عددى، افزايش عمق تاثيرى بر كاهش فر كانسهاى طبيعى ورق دايروى مقيد محيطى با مشخصات مزبور نخواهد داشت.

 ذراتى از سيال كه در مجاورت سازه هستند نيروى شتابدهندهاى وارد میا شود و اين ذرات سيال بهعنوان جرم افزوده در ارتعاشات درات ورق ايفاى نقش مى كنند و فر كانس طبيعى را تحت تاثير قرار مىدهنند. هرچه عمق بيشتر باشد ذراتى از سيال كه در محدوده ميدان فشار سيال قرار مى
 طبيعى كاهش مى يابد. اما با افزايش عمق از محدوده مشخر مخصى بـر به بعد، ديگر محدوده ميدان فشار سيال ثابت مى ماند و در نتيجه جرم افزوده در معادله

سيال در سطح رويين ورق نشان داده شده است است انـي ميانگين درصد اختلاف نتايج حاصل از اندازه گَيرى تجربى و آناليز عددى (DP)
 البته توجه شود كه همواره درصد خطاى داد دادههاى تجربى كمتر از از نتايج
 طبيعى حاصل از تحليل تجربى و فركانس طبيعى حاصل از تحليل عددى مى باشند.

$$
\begin{equation*}
D P=\frac{\left|f_{E}-f_{N}\right|>100}{f_{E}} \tag{1}
\end{equation*}
$$

مشابه "شكل 7"، بىبعدسازى عمق غوطهورى و نرمالايز كردن فركانس طبيعى انجام گرديده و نتايج مربوط به آناليز تجربى و عددى در "شكل 10 10" ارائه شده است. در "شكل 11" فركانسهاى طبيعى اول ورق دايروى در

Fig. 13 Mode shapes circular plate
شكل 13 شكل مودهاى ورق دايروى
فر كانس طبيعى اول ورق در خلا نيز به روش عددى محاسبه گرديد و مقدار

 موضوع نشاندهنده آن است كه ميزان كاهش فر كر كانس نسبت بـر به خلا يك طرفه سيال و ورق 70.7 درصد و با تماس دو طرفه سيال و ورق 25.8 درصد است.
در اين مساله ورق در محل ثابتى مستقر شده است و و تغييرات عمق
 آب در سطح زيرين ورق با ارتفاع ثابت 18 سانتىمتر قرار گرفته ارفته است.

 مورد ارزيابى قرار دادهاند. با تغيير زير ورق است تغيير مى كند و از آن جايى كه تار تغييرات
 براى بررسى تاثير ${ }^{\text {H }}$ روى فر كانس هانى در اين آزمايش همانط طور كه اشاره شد با ثابت نكَّهداشتن

اين مشكل مرتفع شده است.

5 - نتيجه كيرى

تحليل هاى عددى و تجربى انجام شده براى استخراج فر كانس يك ورق دايروى مقيد محيطى و مغروق در نزديى سطح آي آب در اين تحقيق

 نيز تا عمق معينى، بر فر كانسهاى طبيعى انيى ورق تاثير داشته و با با ازدياد عمق،
 ديگر ثابت مىماند. تاكنون از اين روش براى تحليل ارتعاشاتى ورقهاى

Fig. 10 The first natural frequency $(0,1)$ normalized resulting from experimental and numerical analysis circular plate at non-dimensional depth of immersion.
شكل10 فركانس هاى طبيعى اول (1,0) نرمالايز شده منتج از آناليز تجربى و آناليز عددى ورق دايروى در عمقهاى غوطهورى بى بعد شده

Fig. 11 The first natural frequency $(0,1)$ numerical analysis circular plate at non-dimensional immersion depth with thickness and different diameters
شكل11 فركانسهاى طبيعى اول ورق دايروى در عمقهاى غوطهورى با ضخامت و
قطرهاى مختلف

Fig. 12 The first natural frequency $(0,1)$ normalized by numerical analysis circular plate at non-dimensional immersion depth with thickness and different diameters
شكل 12 فر كانسهاى طبيعى اول $(1,0)$ نرمالايز شده آناليز عددى ورق دايروى در
عمق هاى غوطه ورى بى بعد شده با ضخامت و قطرهاى مختلف
در "شكل 13" مود اول، دوم و سوم ورق دايروى نشان داده شده است. شكل مودهاى ورق دايروى بهصورت بر قطرى و b بيان كننده گره دايروى است. بهعبارت ديگر a و b ب بيانگر قطرها و و دايرههاى ثابت و بی حركت در ورق دايروى هستندي
partially submerged in fluid, Journal of Fluids and Structures, Vol. 17, No. 7, pp. 927-939, 2003.
[13] K. H. Jeong, K. J. Kim, Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid, Journal of Sound and Vibration, Vol. 283, pp. 153-172, 2005.
[14] D. Zhou, W. Liu, Hydroelastic vibrations of flexible rectangular tanks partially filled with liquid, International Journal for Numerical Methods in Engineering, Vol. 71, No. 2, pp. 149-174, 2007.
[15] M. Esmailzadeh, A. A. Lakis, M. Thomas, L. Marcouiller, Threedimensional modeling of curved structures containing and/or submerged in fluid, Finite Element in Analysis and Design, Vol. 44, No. 6, pp. 334-345, 2008.
[16] K. H. Jeong, G. M. Lee, T. W. Kim, Free vibration analysis of a circular plate partially in contact with a liquid, Journal of sound and vibration, Vol. 324, No. 1, pp. 194-208, 2009.
[17] E. Askari, F. Daneshmand, Coupled vibration of a partially fluidfilled cylindrical container with a cylindrical internal body, Journal of Fluids and Structures, Vol. 25, No. 2, pp. 389-405, 2009.
[18] E. Askari, K. H. Jeong, Hydroelastic vibration of a cantilever cylindrical shell partially submerged in a liquid, Ocean Engineering, Vol. 37, No. 11, pp. 1027-1035, 2010.
[19] S. Hosseini-Hashemi, M. Karimi, H. Rokni, T. Damavandi, Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method, Ocean Engineering, Vol. 37, No. 2, pp. 174-185, 2010.
[20] S. Hosseini-Hashemi, M. Karimi, H. Rokni, Natural frequencies of rectangular Mindlin plates coupled with stationary fluid, Applied Mathematical Modeling, Vol. 36, No. 2, pp. 764-778, 2012.
[21] M. A. Goodarzi, S. R. Sabbagh-Yazdi, Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles, Ocean Engineering, Vol. 42, No. 1, pp. 205-217, 2012.
[22] S. Tariverdilo, M. Shahmardani, J. Mirzapour, R. Shabani, Asymmetric free vibration of circular plate in contact with in compressible fluid, Applied Mathematical Modeling, Vol. 37, No. 1, pp. 228-239, 2013.
[23] E. Askari, K. H. Jeong, M. Amabili, Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface, Journal of Sound and Vibration, Vol. 332, No. 12, pp. 3064-3085, 2013.

$$
\begin{aligned}
& \text { ورق باعث افزايش دقت اين روش نسبت به تحريك سازه توسط لرزاننده } \\
& \text { الكتروديناميكى است. همچֶنين مىتوان اذعان نمود روش موجود قادر است }
\end{aligned}
$$

6-مراجع
[1] F. M. Espinosa, A. G. Gallego-Juarez, On the resonance frequencies of water-loaded circular plate, Journal of sound and vibration, Vol. 94, No. 2, pp. 217-222, 1984.
[2] N. J. Robinson, S. C. Palmer, A modal analysis of a rectangular plate floating on an incompressible liquid, Journal of sound and vibration, Vol. 142, No. 3, pp. 453-460, 1990.
[3] J. H. Ginsberg, P. Chu, Asymmetric vibration of heavily fluidloaded circular plate using variational principles, Journal of Acoustic Society of America, Vol. 91, No. 2, pp. 894-906, 1992.
[4] M. Amabili, G. Frosali, M. K. Kwak, Free vibrations of annular plates coupled with fluids, Journal of Sound and Vibration, Vol. 191, No. 5, pp. 825-846, 1996.
[5] M. Amabili, G. Dalpiaz, Vibrations of base plates in annular cylindrical tanks: theory and experiments, Journal of Sound and Vibration, Vol. 210, No. 3, pp. 329-350, 1998.
[6] M. K. Kwak, M. Amabili, Hydroelastic vibration of free-edge annular plates, ASME Journal of Vibration and Acoustics, Vol. 121, No. 1, pp. 26-32, 1999.
[7] M. K. Kwak, S. B. Han, Effect of fluid depth on the hydroelastic vibration of free- edge circular plate, Journal of Sound and Vibration, Vol. 230, No. 1, pp. 171-185, 2000.
[8] D. Zhou, Y. K. Cheung, Vibration of vertical rectangular plate in contact with water on one side, Earthquake Engineering \& Structural Dynamics, Vol. 29, No. 5, pp. 693-710, 2000.
[9] M. Amabili, Vibrations of circular plates resting on a sloshing liquid: solution of the fully coupled problem, Journal of sound and vibration, Vol. 245, No. 2, pp. 261-283, 2001.
[10] K. H. Jeong, G. H. Yoo, S. C. Lee, Hydroelastic vibration of two identical rectangular plates, Journal of Sound and Vibration, Vol. 272, pp. 539-555, 2003.
[11] K. H. Jeong, Free vibration of two identical circular plates coupled with bounded fluid, Journal of Sound and Vibration, Vol. 260, No. 4, pp. 653-670, 2003.
[12] A. Ergin, B. Ugurlu, Linear vibration analysis of cantilever plates

[^0]: ${ }^{1}$ Function generator

[^1]: ${ }^{1}$ Electromagnetic shaker

[^2]: ${ }^{1}$ curve fitting

